{ "id": "1501.00698", "version": "v1", "published": "2015-01-04T17:38:00.000Z", "updated": "2015-01-04T17:38:00.000Z", "title": "Maximal inequalities for centered norms of sums of independent random vectors", "authors": [ "Rafał Latała" ], "comment": "9 pages", "journal": "High Dimensional Probability VI, The Banff Volume, Progr. Probab. 66, 63-71, Birkhauser 2013", "doi": "10.1007/978-3-0348-0490-5_4", "categories": [ "math.PR" ], "abstract": "Let $X_1,X_2,\\ldots,X_n$ be independent random variables and $S_k=\\sum_{i=1}^k X_i$. We show that for any constants $a_k$, \\[ \\Pr(\\max_{1\\leq k\\leq n}||S_{k}|-a_{k}|>11t)\\leq 30 \\max_{1\\leq k\\leq n}\\Pr(||S_{k}|-a_{k}|>t). \\] We also discuss similar inequalities for sums of Hilbert and Banach space valued random vectors.", "revisions": [ { "version": "v1", "updated": "2015-01-04T17:38:00.000Z" } ], "analyses": { "subjects": [ "60E15" ], "keywords": [ "independent random vectors", "maximal inequalities", "centered norms", "banach space valued random vectors", "independent random variables" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 9, "language": "en", "license": "arXiv", "status": "editable" } } }