arXiv Analytics

Sign in

arXiv:1412.5549 [math.NT]AbstractReferencesReviewsResources

Cusp forms for exceptional group of type $E_{7}$

Henry H. Kim, Takuya Yamauchi

Published 2014-12-17Version 1

Let $\bf{G}$ be the connected reductive group of type $E_{7,3}$ over $\mathbb{Q}$ and $\mathfrak{T}$ be the corresponding symmetric domain in $\mathbb{C}^{27}$. Let $\Gamma=\bf{G}(\mathbb{Z})$ be the arithmetic subgroup defined by Baily. In this paper, for any positive integer $k\ge 10$, we will construct a (non-zero) holomorphic cusp form on $\mathfrak{T}$ of weight $2k$ with respect to $\Gamma$ from a Hecke cusp form in $S_{2k-8}(SL_2(\mathbb{Z}))$. This lift is an analogue of Ikeda's construction.

Related articles: Most relevant | Search more
arXiv:1711.03785 [math.NT] (Published 2017-11-10)
Higher level cusp forms on the exceptional group of type $E_{7}$
arXiv:2208.14786 [math.NT] (Published 2022-08-31)
A modular analogue of a problem of Vinogradov
arXiv:2402.06572 [math.NT] (Published 2024-02-09, updated 2024-07-08)
Formal Siegel modular forms for arithmetic subgroups