{ "id": "1412.5549", "version": "v1", "published": "2014-12-17T19:55:58.000Z", "updated": "2014-12-17T19:55:58.000Z", "title": "Cusp forms for exceptional group of type $E_{7}$", "authors": [ "Henry H. Kim", "Takuya Yamauchi" ], "comment": "39 pages", "categories": [ "math.NT" ], "abstract": "Let $\\bf{G}$ be the connected reductive group of type $E_{7,3}$ over $\\mathbb{Q}$ and $\\mathfrak{T}$ be the corresponding symmetric domain in $\\mathbb{C}^{27}$. Let $\\Gamma=\\bf{G}(\\mathbb{Z})$ be the arithmetic subgroup defined by Baily. In this paper, for any positive integer $k\\ge 10$, we will construct a (non-zero) holomorphic cusp form on $\\mathfrak{T}$ of weight $2k$ with respect to $\\Gamma$ from a Hecke cusp form in $S_{2k-8}(SL_2(\\mathbb{Z}))$. This lift is an analogue of Ikeda's construction.", "revisions": [ { "version": "v1", "updated": "2014-12-17T19:55:58.000Z" } ], "analyses": { "keywords": [ "exceptional group", "holomorphic cusp form", "hecke cusp form", "arithmetic subgroup", "corresponding symmetric domain" ], "note": { "typesetting": "TeX", "pages": 39, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1412.5549K" } } }