arXiv Analytics

Sign in

arXiv:1412.4656 [math.DS]AbstractReferencesReviewsResources

On the hyperbolicity of $C^1$-generic homoclinic classes

Xiaodong Wang

Published 2014-12-15Version 1

Works of Liao, Ma\~n\'e, Franks, Aoki and Hayashi characterized lack of hyperbolicity for diffeomorphisms by the existence of weak periodic orbits. In this note we announce a result which can be seen as a local version of these works: for C$^1$-generic diffeomorphism, a homoclinic class either is hyperbolic or contains a sequence of periodic orbits that have a Lyapunov exponent arbitrarily close to 0. Des travaux de Liao, Ma\~n\'e, Franks, Aoki et Hayashi ont caract\'eris\'e le manque d'hyperbolicit\'e des diff\'eomorphismes par l'existence d'orbites p\'eriodiques faibles. Dans cette note, nous annon\c{c}ons un r\'esultat qui peut \^{e}tre consid\'{e}r\'{e} comme une version locale de ces travaux: pour les diff\'{e}omorphismes C$^1$-g\'{e}n\'{e}riques, une classe homocline ou bien est hyperbolique, ou bien contient une suite d'orbites p\'{e}riodiques qui ont un exposant de Lyapunov arbitrairement proche de 0.

Related articles: Most relevant | Search more
arXiv:0806.3036 [math.DS] (Published 2008-06-18, updated 2009-11-10)
Codimension one generic homoclinic classes with interior
arXiv:1902.08130 [math.DS] (Published 2019-02-21)
Hyperbolicity of asymmetric lemon billiards
arXiv:2405.09008 [math.DS] (Published 2024-05-15)
Hyperbolicity of renormalization of critical quasicircle maps