arXiv Analytics

Sign in

arXiv:1412.4248 [math.AP]AbstractReferencesReviewsResources

Estimates for the dilatation of $σ$-harmonic mappings

Giovanni Alessandrini, Vincenzo Nesi

Published 2014-12-13Version 1

We consider planar $\sigma$-harmonic mappings, that is mappings $U$ whose components $u^1$ and $u^2$ solve a divergence structure elliptic equation ${\rm div} (\sigma \nabla u^i)=0$, for $i=1,2$. We investigate whether a locally invertible $ \sigma$-harmonic mapping $U$ is also quasiconformal. Under mild regularity assumptions, only involving $\det \sigma$ and the antisymmetric part of $\sigma$, we prove quantitative bounds which imply quasiconformality.

Comments: 8 pages, to appear on Rendiconti di Matematica e delle sue applicazioni
Categories: math.AP
Subjects: 30C62, 35J55
Related articles: Most relevant | Search more
arXiv:1501.03005 [math.AP] (Published 2015-01-13)
Quantitative estimates on Jacobians for hybrid inverse problems
arXiv:1906.00902 [math.AP] (Published 2019-06-03)
Globally diffeomorphic $σ$--harmonic mappings
arXiv:1810.03003 [math.AP] (Published 2018-10-06)
Locally invertible $σ$-harmonic mappings