{ "id": "1412.4248", "version": "v1", "published": "2014-12-13T15:55:29.000Z", "updated": "2014-12-13T15:55:29.000Z", "title": "Estimates for the dilatation of $σ$-harmonic mappings", "authors": [ "Giovanni Alessandrini", "Vincenzo Nesi" ], "comment": "8 pages, to appear on Rendiconti di Matematica e delle sue applicazioni", "categories": [ "math.AP" ], "abstract": "We consider planar $\\sigma$-harmonic mappings, that is mappings $U$ whose components $u^1$ and $u^2$ solve a divergence structure elliptic equation ${\\rm div} (\\sigma \\nabla u^i)=0$, for $i=1,2$. We investigate whether a locally invertible $ \\sigma$-harmonic mapping $U$ is also quasiconformal. Under mild regularity assumptions, only involving $\\det \\sigma$ and the antisymmetric part of $\\sigma$, we prove quantitative bounds which imply quasiconformality.", "revisions": [ { "version": "v1", "updated": "2014-12-13T15:55:29.000Z" } ], "analyses": { "subjects": [ "30C62", "35J55" ], "keywords": [ "harmonic mapping", "dilatation", "divergence structure elliptic equation", "mild regularity assumptions", "antisymmetric part" ], "note": { "typesetting": "TeX", "pages": 8, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1412.4248A" } } }