arXiv:1412.3465 [math.AP]AbstractReferencesReviewsResources
Uniqueness and Lipschitz stability of an inverse boundary value problem for time-harmonic elastic waves
Elena Beretta, Maarten V. de Hoop, Elisa Francini, Sergio Vessella, Jian Zhai
Published 2014-12-10Version 1
We consider the inverse problem of determining the Lam\'{e} parameters and the density of a three-dimensional elastic body from the local time-harmonic Dirichlet-to-Neumann map. We prove uniqueness and Lipschitz stability of this inverse problem when the Lam\'{e} parameters and the density are assumed to be piecewise constant on a given domain partition.
Comments: 24 pages, 2 figures
Categories: math.AP
Related articles: Most relevant | Search more
arXiv:1210.2293 [math.AP] (Published 2012-10-08)
Inverse boundary value problem for the dynamical heterogeneous Maxwell system
arXiv:1404.7024 [math.AP] (Published 2014-04-28)
Uniqueness in inverse boundary value problems for fractional diffusion equations
Lipschitz stability of an inverse boundary value problem for a Schrödinger type equation