{ "id": "1412.3465", "version": "v1", "published": "2014-12-10T21:00:43.000Z", "updated": "2014-12-10T21:00:43.000Z", "title": "Uniqueness and Lipschitz stability of an inverse boundary value problem for time-harmonic elastic waves", "authors": [ "Elena Beretta", "Maarten V. de Hoop", "Elisa Francini", "Sergio Vessella", "Jian Zhai" ], "comment": "24 pages, 2 figures", "categories": [ "math.AP" ], "abstract": "We consider the inverse problem of determining the Lam\\'{e} parameters and the density of a three-dimensional elastic body from the local time-harmonic Dirichlet-to-Neumann map. We prove uniqueness and Lipschitz stability of this inverse problem when the Lam\\'{e} parameters and the density are assumed to be piecewise constant on a given domain partition.", "revisions": [ { "version": "v1", "updated": "2014-12-10T21:00:43.000Z" } ], "analyses": { "subjects": [ "35M30", "35J08" ], "keywords": [ "inverse boundary value problem", "time-harmonic elastic waves", "lipschitz stability", "uniqueness", "inverse problem" ], "note": { "typesetting": "TeX", "pages": 24, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1412.3465B" } } }