arXiv:1411.1815 [math.FA]AbstractReferencesReviewsResources
Functions of perturbed noncommuting self-adjoint operators
Aleksei Aleksandrov, Fedor Nazarov, Vladimir Peller
Published 2014-11-07Version 1
We consider functions $f(A,B)$ of noncommuting self-adjoint operators $A$ and $B$ that can be defined in terms of double operator integrals. We prove that if $f$ belongs to the Besov class $B_{\be,1}^1(\R^2)$, then we have the following Lipschitz type estimate in the trace norm: $\|f(A_1,B_1)-f(A_2,B_2)\|_{\bS_1}\le\const(\|A_1-A_2\|_{\bS_1}+\|B_1-B_2\|_{\bS_1})$. However, the condition $f\in B_{\be,1}^1(\R^2)$ does not imply the Lipschitz type estimate in the operator norm.
Comments: 6 pages
Related articles: Most relevant | Search more
arXiv:1509.02803 [math.FA] (Published 2015-09-09)
Multiple operator integrals in perturbation theory
arXiv:1907.03368 [math.FA] (Published 2019-07-07)
Minimal curves in U(n) and Gl(n)+ with respect to the spectral and the trace norms
The Operator Norm of Paraproducts on Hardy Spaces