{ "id": "1411.1815", "version": "v1", "published": "2014-11-07T03:20:33.000Z", "updated": "2014-11-07T03:20:33.000Z", "title": "Functions of perturbed noncommuting self-adjoint operators", "authors": [ "Aleksei Aleksandrov", "Fedor Nazarov", "Vladimir Peller" ], "comment": "6 pages", "categories": [ "math.FA", "math.CA", "math.CV", "math.SP" ], "abstract": "We consider functions $f(A,B)$ of noncommuting self-adjoint operators $A$ and $B$ that can be defined in terms of double operator integrals. We prove that if $f$ belongs to the Besov class $B_{\\be,1}^1(\\R^2)$, then we have the following Lipschitz type estimate in the trace norm: $\\|f(A_1,B_1)-f(A_2,B_2)\\|_{\\bS_1}\\le\\const(\\|A_1-A_2\\|_{\\bS_1}+\\|B_1-B_2\\|_{\\bS_1})$. However, the condition $f\\in B_{\\be,1}^1(\\R^2)$ does not imply the Lipschitz type estimate in the operator norm.", "revisions": [ { "version": "v1", "updated": "2014-11-07T03:20:33.000Z" } ], "analyses": { "subjects": [ "47A60", "47A55" ], "keywords": [ "perturbed noncommuting self-adjoint operators", "lipschitz type estimate", "operator norm", "besov class", "trace norm" ], "note": { "typesetting": "TeX", "pages": 6, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1411.1815A" } } }