arXiv Analytics

Sign in

arXiv:1410.7204 [math.CA]AbstractReferencesReviewsResources

On The maximal operators of Vilenkin-Fejér means on Hardy spaces

George Tephnadze

Published 2014-10-05Version 1

The main aim of this paper is to prove that when $0<p<1/2$ the maximal operator $\overset{\sim }{\sigma }_{p}^{\ast }f:=\underset{n\in \mathbb{N}}{% \sup }\frac{\left\vert \sigma_{n}f\right\vert }{\left( n+1\right) ^{1/p-2}}$ is bounded from the martingale Hardy space $H_{p}$ to the space $L_{p},$ where $\sigma_{n}$ is $n$-th Fej\'er mean with respect to bounded Vilenkin system.

Comments: Vilenkin system, Fej\'er means, martingale Hardy space. arXiv admin note: substantial text overlap with arXiv:1410.6416, arXiv:1410.7075
Journal: Mathematical Inequalities & Applications, 16 (2), (2013), 301-312
Categories: math.CA, math.FA
Subjects: 42C10
Related articles: Most relevant | Search more
arXiv:1410.6416 [math.CA] (Published 2014-10-05)
On The maximal operators of Vilenkin-Fejér means
arXiv:1503.05394 [math.CA] (Published 2015-02-14)
A note on the norm convergence by Vilenkin-Fejér means
arXiv:1410.7978 [math.CA] (Published 2014-10-21)
A sharp boundedness result concerning some maximal operators of Vilenkin-Fejér means