arXiv Analytics

Sign in

arXiv:1410.6416 [math.CA]AbstractReferencesReviewsResources

On The maximal operators of Vilenkin-Fejér means

George Tephnadze

Published 2014-10-05Version 1

The main aim of this paper is to prove that the maximal operator $\overset{% \sim }{\sigma }^{*}f:=\underset{n\in P}{\sup }\frac{\left| \sigma_{n}f\right| }{\log ^{2}\left( n+1\right) }$ is bounded from the Hardy space $H_{1/2}$ to the space $L_{1/2}$, where $\sigma_{n}f$ is Fej\'er means of bounded Vilenkin-Fourier series.

Comments: Vilenkin system, Fej\'er means, martingale Hardy space. arXiv admin note: text overlap with arXiv:1410.6101
Journal: Turk J Math, 37, (2013), 308-318
Categories: math.CA, math.FA
Subjects: 42C10
Related articles: Most relevant | Search more
arXiv:1410.7204 [math.CA] (Published 2014-10-05)
On The maximal operators of Vilenkin-Fejér means on Hardy spaces
arXiv:1410.7977 [math.CA] (Published 2014-10-05)
Approximation by Walsh-Kaczmarz-Fejér means on the Hardy space
arXiv:1410.6721 [math.CA] (Published 2014-10-05)
On the maximal operators of Walsh-Kaczmarz-Fejér means