arXiv Analytics

Sign in

arXiv:1410.6917 [math.RT]AbstractReferencesReviewsResources

A new involution for quantum loop algebras

Jyun-Ao Lin

Published 2014-10-25Version 1

In this article, we introduce a completion $\widehat{U}^+_v(\mathcal{L}\mathfrak{g})$ of the positive half of the quantum affinization $U^+_v(\mathcal{L}\mathfrak{g})$ of a symmetrizable Kac-Moody algebra $\mathfrak{g}$. On $\widehat{U}^+_v(\mathcal{L}(\mathfrak{g}))$, we define a new "bar-involution" and construct the analogue Kashiwara's operators. We conjecture that the resulting pair $(\widehat{\mathcal{L}},\widehat{\mathcal{B}})$ is a crystal basis which provides the existence of the "canonical basis" on the (completion of the) of the positive half of the quamtum affinization.

Related articles: Most relevant | Search more
arXiv:2501.00724 [math.RT] (Published 2025-01-01)
Category O for quantum loop algebras
arXiv:1102.1076 [math.RT] (Published 2011-02-05)
Quantum loop algebras, quiver varieties, and cluster algebras
arXiv:1912.03325 [math.RT] (Published 2019-12-06)
Coherent categorification of quantum loop algebras : the $SL(2)$ case