{ "id": "1410.6917", "version": "v1", "published": "2014-10-25T12:37:44.000Z", "updated": "2014-10-25T12:37:44.000Z", "title": "A new involution for quantum loop algebras", "authors": [ "Jyun-Ao Lin" ], "comment": "12 pages", "categories": [ "math.RT", "math.QA" ], "abstract": "In this article, we introduce a completion $\\widehat{U}^+_v(\\mathcal{L}\\mathfrak{g})$ of the positive half of the quantum affinization $U^+_v(\\mathcal{L}\\mathfrak{g})$ of a symmetrizable Kac-Moody algebra $\\mathfrak{g}$. On $\\widehat{U}^+_v(\\mathcal{L}(\\mathfrak{g}))$, we define a new \"bar-involution\" and construct the analogue Kashiwara's operators. We conjecture that the resulting pair $(\\widehat{\\mathcal{L}},\\widehat{\\mathcal{B}})$ is a crystal basis which provides the existence of the \"canonical basis\" on the (completion of the) of the positive half of the quamtum affinization.", "revisions": [ { "version": "v1", "updated": "2014-10-25T12:37:44.000Z" } ], "analyses": { "keywords": [ "quantum loop algebras", "involution", "positive half", "analogue kashiwaras operators", "quantum affinization" ], "note": { "typesetting": "TeX", "pages": 12, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1410.6917L" } } }