arXiv Analytics

Sign in

arXiv:1408.5650 [math.NT]AbstractReferencesReviewsResources

Generation of class fields by using the Weber function

Ja Kyung Koo, Dong Hwa Shin, Dong Sung Yoon

Published 2014-08-25Version 1

Let $K$ be an imaginary quadratic field and $\mathcal{O}_K$ be its ring of integers. Let $h_E$ be the Weber function on a certain elliptic curve $E$ with complex multiplication by $\mathcal{O}_K$. We show that if $N>1$ is an integer prime to $6$, then the value of $h_E$ at some $N$-torsion point of $E$ generates the ray class field modulo $N\mathcal{O}_K$ over $K$.

Related articles: Most relevant | Search more
arXiv:1608.06705 [math.NT] (Published 2016-08-24)
On Hasse-Ramachandra's problem
arXiv:1007.2317 [math.NT] (Published 2010-07-14, updated 2011-01-27)
Ray class invariants over imaginary quadratic fields
arXiv:1103.1125 [math.NT] (Published 2011-03-06, updated 2011-04-20)
On the classical main conjecture for imaginary quadratic fields