arXiv:1408.5650 [math.NT]AbstractReferencesReviewsResources
Generation of class fields by using the Weber function
Ja Kyung Koo, Dong Hwa Shin, Dong Sung Yoon
Published 2014-08-25Version 1
Let $K$ be an imaginary quadratic field and $\mathcal{O}_K$ be its ring of integers. Let $h_E$ be the Weber function on a certain elliptic curve $E$ with complex multiplication by $\mathcal{O}_K$. We show that if $N>1$ is an integer prime to $6$, then the value of $h_E$ at some $N$-torsion point of $E$ generates the ray class field modulo $N\mathcal{O}_K$ over $K$.
Categories: math.NT
Related articles: Most relevant | Search more
arXiv:1608.06705 [math.NT] (Published 2016-08-24)
On Hasse-Ramachandra's problem
Ray class invariants over imaginary quadratic fields
On the classical main conjecture for imaginary quadratic fields