{ "id": "1408.5650", "version": "v1", "published": "2014-08-25T01:25:01.000Z", "updated": "2014-08-25T01:25:01.000Z", "title": "Generation of class fields by using the Weber function", "authors": [ "Ja Kyung Koo", "Dong Hwa Shin", "Dong Sung Yoon" ], "categories": [ "math.NT" ], "abstract": "Let $K$ be an imaginary quadratic field and $\\mathcal{O}_K$ be its ring of integers. Let $h_E$ be the Weber function on a certain elliptic curve $E$ with complex multiplication by $\\mathcal{O}_K$. We show that if $N>1$ is an integer prime to $6$, then the value of $h_E$ at some $N$-torsion point of $E$ generates the ray class field modulo $N\\mathcal{O}_K$ over $K$.", "revisions": [ { "version": "v1", "updated": "2014-08-25T01:25:01.000Z" } ], "analyses": { "subjects": [ "11R37", "11G15", "11G16" ], "keywords": [ "weber function", "generation", "ray class field modulo", "imaginary quadratic field", "integer prime" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1408.5650K" } } }