arXiv:1408.5233 [math.DG]AbstractReferencesReviewsResources
One-sided curvature estimates for H-disks
William H. Meeks III, Giuseppe Tinaglia
Published 2014-08-22Version 1
In this paper we prove an extrinsic one-sided curvature estimate for disks embedded in $\mathbb{R}^3$ with constant mean curvature which is independent of the value of the constant mean curvature. We apply this extrinsic one-sided curvature estimate in [24] to prove to prove a weak chord arc type result for these disks. In Section 4 we apply this weak chord arc result to obtain an intrinsic version of the one-sided curvature estimate for disks embedded in $\mathbb{R}^3$ with constant mean curvature. In a natural sense, these one-sided curvature estimates generalize respectively, the extrinsic and intrinsic one-sided curvature estimates for minimal disks embedded in $\mathbb{R}^3$ given by Colding and Minicozzi in Theorem 0.2 of [9] and in Corollary 0.8 of [10].