{ "id": "1408.5233", "version": "v1", "published": "2014-08-22T09:13:52.000Z", "updated": "2014-08-22T09:13:52.000Z", "title": "One-sided curvature estimates for H-disks", "authors": [ "William H. Meeks III", "Giuseppe Tinaglia" ], "comment": "13 pages, 1 figure", "categories": [ "math.DG" ], "abstract": "In this paper we prove an extrinsic one-sided curvature estimate for disks embedded in $\\mathbb{R}^3$ with constant mean curvature which is independent of the value of the constant mean curvature. We apply this extrinsic one-sided curvature estimate in [24] to prove to prove a weak chord arc type result for these disks. In Section 4 we apply this weak chord arc result to obtain an intrinsic version of the one-sided curvature estimate for disks embedded in $\\mathbb{R}^3$ with constant mean curvature. In a natural sense, these one-sided curvature estimates generalize respectively, the extrinsic and intrinsic one-sided curvature estimates for minimal disks embedded in $\\mathbb{R}^3$ given by Colding and Minicozzi in Theorem 0.2 of [9] and in Corollary 0.8 of [10].", "revisions": [ { "version": "v1", "updated": "2014-08-22T09:13:52.000Z" } ], "analyses": { "subjects": [ "53A10" ], "keywords": [ "constant mean curvature", "extrinsic one-sided curvature estimate", "weak chord arc type result", "curvature estimates generalize" ], "note": { "typesetting": "TeX", "pages": 13, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1408.5233M" } } }