arXiv Analytics

Sign in

arXiv:1408.4613 [math.AP]AbstractReferencesReviewsResources

Bifurcations for a Coupled Schrödinger System with Multiple Components

Thomas Bartsch, Rushun Tian, Zhi-Qiang Wang

Published 2014-08-20Version 1

In this paper, we study local bifurcations of an indefinite elliptic system with multiple components: \begin{equation*} \left\{\begin{array}{ll} -\Delta u_j + au_j = \mu_ju_j^3+\beta\sum_{k\ne j}u_k^2u_j, u_j>0\ \ \hbox{in}\ \Omega, u_j=0 \ \ \hbox{on}\ \partial\Omega,\ j=1,\dots,n. \end{array} \right. \end{equation*} Here $\Omega\subset{\mathbb{R}}^N$ is a smooth and bounded domain, $n\ge3$, $a<-\Lambda_1$ where $\Lambda_1$ is the principal eigenvalue of $(-\Delta, H_0^1(\Omega))$; $\mu_j$ and $\beta$ are real constants. Using the positive and non-degenerate solution of the scalar equation $-\Delta\omega-\omega=-\omega^3$, $\omega\in H_0^1(\Omega)$, we construct a synchronized solution branch $\mathcal{T}_\omega$. Then we find a sequence of local bifurcations with respect to $\mathcal{T}_\omega$, and we find global bifurcation branches of partially synchronized solutions.

Related articles: Most relevant | Search more
arXiv:2105.10630 [math.AP] (Published 2021-05-22)
Positive least energy solutions for $k$-coupled Schrödinger system with critical exponent: the higher dimension and cooperative case
arXiv:1908.11629 [math.AP] (Published 2019-08-30)
Normalized solutions for a coupled Schrödinger system
arXiv:1308.3115 [math.AP] (Published 2013-08-14, updated 2013-08-15)
Positive radial solutions for coupled Schrödinger system with critical exponent in $\R^N\,(N\geq5)$