{ "id": "1408.4613", "version": "v1", "published": "2014-08-20T11:43:43.000Z", "updated": "2014-08-20T11:43:43.000Z", "title": "Bifurcations for a Coupled Schrödinger System with Multiple Components", "authors": [ "Thomas Bartsch", "Rushun Tian", "Zhi-Qiang Wang" ], "comment": "16 pages, 2 figures", "categories": [ "math.AP" ], "abstract": "In this paper, we study local bifurcations of an indefinite elliptic system with multiple components: \\begin{equation*} \\left\\{\\begin{array}{ll} -\\Delta u_j + au_j = \\mu_ju_j^3+\\beta\\sum_{k\\ne j}u_k^2u_j, u_j>0\\ \\ \\hbox{in}\\ \\Omega, u_j=0 \\ \\ \\hbox{on}\\ \\partial\\Omega,\\ j=1,\\dots,n. \\end{array} \\right. \\end{equation*} Here $\\Omega\\subset{\\mathbb{R}}^N$ is a smooth and bounded domain, $n\\ge3$, $a<-\\Lambda_1$ where $\\Lambda_1$ is the principal eigenvalue of $(-\\Delta, H_0^1(\\Omega))$; $\\mu_j$ and $\\beta$ are real constants. Using the positive and non-degenerate solution of the scalar equation $-\\Delta\\omega-\\omega=-\\omega^3$, $\\omega\\in H_0^1(\\Omega)$, we construct a synchronized solution branch $\\mathcal{T}_\\omega$. Then we find a sequence of local bifurcations with respect to $\\mathcal{T}_\\omega$, and we find global bifurcation branches of partially synchronized solutions.", "revisions": [ { "version": "v1", "updated": "2014-08-20T11:43:43.000Z" } ], "analyses": { "subjects": [ "35B32", "35J50", "35J57", "35J61", "47J15", "58E07" ], "keywords": [ "coupled schrödinger system", "multiple components", "global bifurcation branches", "indefinite elliptic system", "study local bifurcations" ], "publication": { "doi": "10.1007/s00033-015-0498-x", "journal": "Zeitschrift Angewandte Mathematik und Physik", "year": 2015, "month": "Oct", "volume": 66, "number": 5, "pages": 2109 }, "note": { "typesetting": "TeX", "pages": 16, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015ZaMP...66.2109B" } } }