arXiv Analytics

Sign in

arXiv:1408.4146 [math.AP]AbstractReferencesReviewsResources

Global existence of weak solutions of the nematic liquid crystal flow in dimensions three

Fanghua Lin, Changyou Wang

Published 2014-08-18Version 1

For any bounded smooth domain $\Omega\subset\mathbb R^3$, we establish the global existence of a weak solution $u:\Omega\times (0,+\infty)\to\mathbb R^3\times\mathbb S^2$ of the initial-boundary value (or the Cauchy) problem of the simplified Ericksen-Leslie system (1.1) modeling the hydrodynamic flow of nematic liquid crystals for any initial and boundary (or Cauchy) data $(u_0. d_0)\in {\bf H}\times H^1(\Omega,\mathbb S^2$), with $d_0(\Omega)\subset\mathbb S^2_+$ (the upper hemisphere). Furthermore, ($u,d$) satisfies the global energy inequality (1.4).

Related articles: Most relevant | Search more
arXiv:math/0607579 [math.AP] (Published 2006-07-23, updated 2006-10-09)
Global existence and uniqueness of Schrödinger maps in dimensions $d\geq 4$
arXiv:0910.5876 [math.AP] (Published 2009-10-30, updated 2010-08-30)
Regularity versus singularities for elliptic problems in two dimensions
arXiv:1304.1989 [math.AP] (Published 2013-04-07)
Global solution to a cubic nonlinear Dirac equation in 1+1 dimensions