{ "id": "1408.4146", "version": "v1", "published": "2014-08-18T20:17:13.000Z", "updated": "2014-08-18T20:17:13.000Z", "title": "Global existence of weak solutions of the nematic liquid crystal flow in dimensions three", "authors": [ "Fanghua Lin", "Changyou Wang" ], "comment": "24 pages", "categories": [ "math.AP" ], "abstract": "For any bounded smooth domain $\\Omega\\subset\\mathbb R^3$, we establish the global existence of a weak solution $u:\\Omega\\times (0,+\\infty)\\to\\mathbb R^3\\times\\mathbb S^2$ of the initial-boundary value (or the Cauchy) problem of the simplified Ericksen-Leslie system (1.1) modeling the hydrodynamic flow of nematic liquid crystals for any initial and boundary (or Cauchy) data $(u_0. d_0)\\in {\\bf H}\\times H^1(\\Omega,\\mathbb S^2$), with $d_0(\\Omega)\\subset\\mathbb S^2_+$ (the upper hemisphere). Furthermore, ($u,d$) satisfies the global energy inequality (1.4).", "revisions": [ { "version": "v1", "updated": "2014-08-18T20:17:13.000Z" } ], "analyses": { "keywords": [ "nematic liquid crystal flow", "global existence", "weak solution", "dimensions", "global energy inequality" ], "note": { "typesetting": "TeX", "pages": 24, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1408.4146L" } } }