arXiv:1408.2881 [math.LO]AbstractReferencesReviewsResources
Infinite subsets of random sets of integers
Published 2014-08-12Version 1
There is an infinite subset of a Martin-L\"of random set of integers that does not compute any Martin-L\"of random set of integers. To prove this, we show that each real of positive effective Hausdorff dimension computes an infinite subset of a Martin-L\"of random set of integers, and apply a result of Miller.
Journal: Mathematical Research Letters 16 (2009), no. 1, 103--110
Categories: math.LO
Tags: journal article
Related articles: Most relevant | Search more
arXiv:1602.03690 [math.LO] (Published 2016-02-11)
Constructing a weak subset of a random set
arXiv:2306.01226 [math.LO] (Published 2023-06-02)
Coding information into all infinite subsets of a dense set
arXiv:1602.03784 [math.LO] (Published 2016-02-11)
$\mathsf{RT}_2^2$ does not imply $\mathsf{WKL}_0$