{ "id": "1408.2881", "version": "v1", "published": "2014-08-12T23:45:33.000Z", "updated": "2014-08-12T23:45:33.000Z", "title": "Infinite subsets of random sets of integers", "authors": [ "Bjørn Kjos-Hanssen" ], "journal": "Mathematical Research Letters 16 (2009), no. 1, 103--110", "doi": "10.4310/MRL.2009.v16.n1.a10", "categories": [ "math.LO" ], "abstract": "There is an infinite subset of a Martin-L\\\"of random set of integers that does not compute any Martin-L\\\"of random set of integers. To prove this, we show that each real of positive effective Hausdorff dimension computes an infinite subset of a Martin-L\\\"of random set of integers, and apply a result of Miller.", "revisions": [ { "version": "v1", "updated": "2014-08-12T23:45:33.000Z" } ], "analyses": { "keywords": [ "random set", "infinite subset", "positive effective hausdorff dimension" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1408.2881K" } } }