arXiv Analytics

Sign in

arXiv:1407.8465 [math.NT]AbstractReferencesReviewsResources

New congruences involving harmonic numbers

Zhi-Wei Sun

Published 2014-07-31, updated 2024-01-09Version 5

Let $p>3$ be a prime. For any $p$-adic integer $a$, we determine $$\sum_{k=0}^{p-1}\binom{-a}k\binom{a-1}kH_k,\ \ \sum_{k=0}^{p-1}\binom{-a}k\binom{a-1}kH_k^{(2)},\ \ \sum_{k=0}^{p-1}\binom{-a}k\binom{a-1}k\frac{H_k^{(2)}}{2k+1}$$ modulo $p^2$, where $H_k=\sum_{0<j\le k}1/j$ and $H_k^{(2)}=\sum_{0<j\le k}1/j^2$. In particular, we show that \begin{gather*}\sum_{k=0}^{p-1}\binom{-a}k\binom{a-1}kH_k\equiv(-1)^{\langle a\rangle_p}\,2\left(B_{p-1}(a)-B_{p-1}\right)\pmod p, \\\sum_{k=0}^{p-1}\binom{-a}k\binom{a-1}kH_k^{(2)}\equiv -E_{p-3}(a)\pmod p, \\(2a-1)\sum_{k=0}^{p-1}\binom{-a}k\binom{a-1}k\frac{H_k^{(2)}}{2k+1}\equiv B_{p-2}(a)\pmod p, \end{gather*} where $\langle a\rangle_p$ stands for the least nonnegative integer $r$ with $a\equiv r\pmod{p}$, and $B_n(x)$ and $E_n(x)$ denote the Bernoulli polynomial of degree $n$ and the Euler polynomial of degree $n$ respectively. We also pose some new conjectures on congruences.

Comments: 32 pages, final published version
Journal: Nanjing Univ. J. Math. Biquarterly 40 (2023), 1--33
Categories: math.NT
Subjects: 11A07, 11B65, 05A10, 11B68, 11B75
Related articles: Most relevant | Search more
arXiv:1412.0523 [math.NT] (Published 2014-11-28)
Two congruences involving harmonic numbers with applications
arXiv:1001.0348 [math.NT] (Published 2010-01-04, updated 2011-05-23)
On harmonic numbers and Lucas sequences
arXiv:0709.1665 [math.NT] (Published 2007-09-11, updated 2011-06-02)
On some new congruences for binomial coefficients