{ "id": "1407.8465", "version": "v5", "published": "2014-07-31T15:53:32.000Z", "updated": "2024-01-09T16:30:43.000Z", "title": "New congruences involving harmonic numbers", "authors": [ "Zhi-Wei Sun" ], "comment": "32 pages, final published version", "journal": "Nanjing Univ. J. Math. Biquarterly 40 (2023), 1--33", "categories": [ "math.NT" ], "abstract": "Let $p>3$ be a prime. For any $p$-adic integer $a$, we determine $$\\sum_{k=0}^{p-1}\\binom{-a}k\\binom{a-1}kH_k,\\ \\ \\sum_{k=0}^{p-1}\\binom{-a}k\\binom{a-1}kH_k^{(2)},\\ \\ \\sum_{k=0}^{p-1}\\binom{-a}k\\binom{a-1}k\\frac{H_k^{(2)}}{2k+1}$$ modulo $p^2$, where $H_k=\\sum_{03$ be a prime. For any $p$-adic integer $a$, we determine $$\\sum_{k=0}^{p-1}\\binom{-a}k\\binom{a-1}kH_k,\\ \\ \\sum_{k=0}^{p-1}\\binom{-a}k\\binom{a-1}kH_k^{(2)},\\ \\ \\sum_{k=0}^{p-1}\\binom{-a}k\\binom{a-1}k\\frac{H_k^{(2)}}{2k+1}$$ modulo $p^2$, where $H_k=\\sum_{0