arXiv:1407.6629 [math.AP]AbstractReferencesReviewsResources
A multiplicity result for Chern-Simons-Schrödinger equation with a general nonlinearity
Patricia L. Cunha, Pietro d'Avenia, Alessio Pomponio, Gaetano Siciliano
Published 2014-07-24Version 1
In this paper we give a multiplicity result for the following Chern-Simons-Schr\"odinger equation \[ -\Delta u+2q u \int_{|x|}^{\infty}\frac{u^{2}(s)}{s}h_u(s)ds +q u\frac{h^{2}_u(|x|)}{|x|^{2}} = g(u), \quad\hbox{in }\mathbb{R}^2, \] where $\displaystyle h_u(s)=\int_0^s \tau u^2(\tau) \ d \tau$, under very general assumptions on the nonlinearity $g$. In particular, for every $n\in \mathbb N$, we prove the existence of (at least) $n$ distinct solutions, for every $q\in (0,q_{n})$, for a suitable $q_n$.
Comments: 16 pages
Categories: math.AP
Related articles: Most relevant | Search more
arXiv:math/0701757 [math.AP] (Published 2007-01-25)
A multiplicity result for the problem $δd ξ= f'(<ξ,ξ>)ξ$
arXiv:1206.0853 [math.AP] (Published 2012-06-05)
The pseudorelativistic Hartree equation with a general nonlinearity: existence, non existence and variational identities
arXiv:2406.11532 [math.AP] (Published 2024-06-17)
Global well-posedness, scattering and blow-up for the energy-critical, Schrödinger equation with general nonlinearity in the radial case