{ "id": "1407.6629", "version": "v1", "published": "2014-07-24T16:05:01.000Z", "updated": "2014-07-24T16:05:01.000Z", "title": "A multiplicity result for Chern-Simons-Schrödinger equation with a general nonlinearity", "authors": [ "Patricia L. Cunha", "Pietro d'Avenia", "Alessio Pomponio", "Gaetano Siciliano" ], "comment": "16 pages", "categories": [ "math.AP" ], "abstract": "In this paper we give a multiplicity result for the following Chern-Simons-Schr\\\"odinger equation \\[ -\\Delta u+2q u \\int_{|x|}^{\\infty}\\frac{u^{2}(s)}{s}h_u(s)ds +q u\\frac{h^{2}_u(|x|)}{|x|^{2}} = g(u), \\quad\\hbox{in }\\mathbb{R}^2, \\] where $\\displaystyle h_u(s)=\\int_0^s \\tau u^2(\\tau) \\ d \\tau$, under very general assumptions on the nonlinearity $g$. In particular, for every $n\\in \\mathbb N$, we prove the existence of (at least) $n$ distinct solutions, for every $q\\in (0,q_{n})$, for a suitable $q_n$.", "revisions": [ { "version": "v1", "updated": "2014-07-24T16:05:01.000Z" } ], "analyses": { "subjects": [ "35J20", "35Q55", "81T10" ], "keywords": [ "multiplicity result", "chern-simons-schrödinger equation", "general nonlinearity", "general assumptions" ], "note": { "typesetting": "TeX", "pages": 16, "language": "en", "license": "arXiv", "status": "editable", "inspire": 1307818, "adsabs": "2014arXiv1407.6629C" } } }