arXiv:1407.6233 [math.AP]AbstractReferencesReviewsResources
A sharp inequality for Sobolev functions
Published 2014-07-23Version 1
Let $N\geq 5$, $a>0$, $\Omega$ be a smooth bounded domain in $\mathbb{R}^{N}$, $2^*=\frac{2N}{N-2}$, $2^\#=\frac{2(N-1)}{N-2}$ and $||u||^2=|\nabla u|_{2}^2+a|u|_{2}^2$. We prove there exists an $\alpha_{0}>0$ such that, for all $u\in H^1(\Omega)\setminus\{0\}$, $$\frac{S}{2^{\frac 2N}}\leq\frac{||u||^2}{|u|_{2^*}^2}\left(1+\alpha_{0}\frac{|u|_{2^\#}^{2^\#}}{||u||\cdot|u|_{2^*}^{2^*/2}}\right).$$ This inequality implies Cherrier's inequality.
Comments: 4 pages
Journal: C. R. Math. Acad. Sci. Paris 334 (2002), 105-108
Categories: math.AP
Keywords: sobolev functions, sharp inequality, inequality implies cherriers inequality, smooth bounded domain
Tags: journal article
Related articles: Most relevant | Search more
arXiv:1302.2204 [math.AP] (Published 2013-02-09)
Traces of Sobolev functions on regular surfaces in infinite dimensions
arXiv:2207.08738 [math.AP] (Published 2022-07-18)
On fine differentiability properties of Sobolev functions
arXiv:0809.4054 [math.AP] (Published 2008-09-23)
A sharp inequality for the Strichartz norm