{ "id": "1407.6233", "version": "v1", "published": "2014-07-23T14:25:45.000Z", "updated": "2014-07-23T14:25:45.000Z", "title": "A sharp inequality for Sobolev functions", "authors": [ "Pedro M. GirĂ£o" ], "comment": "4 pages", "journal": "C. R. Math. Acad. Sci. Paris 334 (2002), 105-108", "doi": "10.1016/S1631-073X(02)02215-X", "categories": [ "math.AP" ], "abstract": "Let $N\\geq 5$, $a>0$, $\\Omega$ be a smooth bounded domain in $\\mathbb{R}^{N}$, $2^*=\\frac{2N}{N-2}$, $2^\\#=\\frac{2(N-1)}{N-2}$ and $||u||^2=|\\nabla u|_{2}^2+a|u|_{2}^2$. We prove there exists an $\\alpha_{0}>0$ such that, for all $u\\in H^1(\\Omega)\\setminus\\{0\\}$, $$\\frac{S}{2^{\\frac 2N}}\\leq\\frac{||u||^2}{|u|_{2^*}^2}\\left(1+\\alpha_{0}\\frac{|u|_{2^\\#}^{2^\\#}}{||u||\\cdot|u|_{2^*}^{2^*/2}}\\right).$$ This inequality implies Cherrier's inequality.", "revisions": [ { "version": "v1", "updated": "2014-07-23T14:25:45.000Z" } ], "analyses": { "subjects": [ "46E35", "35J65" ], "keywords": [ "sobolev functions", "sharp inequality", "inequality implies cherriers inequality", "smooth bounded domain" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 4, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1407.6233G" } } }