arXiv Analytics

Sign in

arXiv:1407.4533 [math.CO]AbstractReferencesReviewsResources

A Study on Topological Integer Additive Set-Labeling of Graphs

N. K. Sudev, K. A. Germina

Published 2014-07-17, updated 2015-03-18Version 2

A set-labeling of a graph $G$ is an injective function $f:V(G)\to \mathcal{P}(X)$, where $X$ is a finite set and a set-indexer of $G$ is a set-labeling such that the induced function $f^{\oplus}:E(G)\to \mathcal{P}(X)-\{\emptyset\}$ defined by $f^{\oplus}(uv) = f(u){\oplus}f(v)$ for every $uv{\in} E(G)$ is also injective. Let $G$ be a graph and let $X$ be a non-empty set. A set-indexer $f:V(G)\to \mathcal{P}(X)$ is called a topological set-labeling of $G$ if $f(V(G))$ is a topology of $X$. An integer additive set-labeling is an injective function $f:V(G)\to \mathcal{P}(\mathbb{N}_0)$, whose associated function $f^+:E(G)\to \mathcal{P}(\mathbb{N}_0)$ is defined by $f(uv)=f(u)+f(v), uv\in E(G)$, where $\mathbb{N}_0$ is the set of all non-negative integers and $\mathcal{P}(\mathbb{N}_0)$ is its power set. An integer additive set-indexer is an integer additive set-labeling such that the induced function $f^+:E(G) \to \mathcal{P}(\mathbb{N}_0)$ defined by $f^+ (uv) = f(u)+ f(v)$ is also injective. In this paper, we extend the concepts of topological set-labeling of graphs to topological integer additive set-labeling of graphs.

Comments: 16 pages, 7 figures, Accepted for publication. arXiv admin note: text overlap with arXiv:1403.3984
Journal: ELectronic Journal of Graph Theory and Applications, Vol. 3, Issue.1, 2015, pp. 70-84
Categories: math.CO
Subjects: 05C78
Related articles: Most relevant | Search more
arXiv:1610.02504 [math.CO] (Published 2016-10-08)
Minimizing the sum of projections of a finite set
arXiv:1606.04986 [math.CO] (Published 2016-06-15)
Power Series with Coefficients from a Finite Set
arXiv:1606.03468 [math.CO] (Published 2016-06-10)
An improved bound on $(A+A)/(A+A)$