arXiv Analytics

Sign in

arXiv:1407.1222 [math.NT]AbstractReferencesReviewsResources

Average number of squares dividing mn

Andrew V. Lelechenko

Published 2014-07-04, updated 2014-12-08Version 2

We study the asymptotic behaviour of $\sum_{m,n\le x} \tau_{1,2}(mn)$, where $\tau_{1,2}(n) = \sum_{a b^2 = n} 1$, using multidimensional Perron formula and complex integration method. An asymptotic formula with an error term $O(x^{10/7})$ is obtained.

Comments: 12 pages, 1 figure
Journal: Visn. Odessk. Univ., Ser. Mat. Mekh., 2014, vol. 19, #2 (22), p. 52-65
Categories: math.NT
Subjects: 11A25, 11N37
Related articles: Most relevant | Search more
arXiv:1903.12445 [math.NT] (Published 2019-03-29)
On asymptotic behaviour of Dirichlet inverse
arXiv:1307.1414 [math.NT] (Published 2013-07-04)
On the average number of subgroups of the group $\Z_m \times \Z_n$
arXiv:2008.07850 [math.NT] (Published 2020-08-18)
On the weighted average number of subgroups of ${\mathbb {Z}}_{m}\times {\mathbb {Z}}_{n}$ with $mn\leq x$