arXiv:1407.0668 [math.RT]AbstractReferencesReviewsResources
KLR algebras and the branching rule II: the categorical Gelfand-Tsetlin basis for the classical Lie algebras
Published 2014-07-02Version 1
We construct functors categorifying the branching rules for $U_q(\mathfrak{g})$ for $\mathfrak{g}$ of type $B_n$, $C_n$, and $D_n$ for the embeddings $so_{2n+1}\supset so_{2n-1}$, $sp_{2n}\supset sp_{2n-2}$, and $so_{2n}\supset so_{2n-2}$. We give the corresponding categorical Gelfand-Tsetlin basis.
Comments: 30 pages
Related articles: Most relevant | Search more
arXiv:1709.07769 [math.RT] (Published 2017-09-22)
Convolution Products and R-Matrices for KLR Algebras of Type $B$
Gelfand-Tsetlin bases for classical Lie algebras
arXiv:1802.02112 [math.RT] (Published 2018-02-06)
Projective modules over classical Lie algebras of infinite rank in the parabolic category