arXiv:1406.5158 [math-ph]AbstractReferencesReviewsResources
Boson-fermion correspondence of type D-A and multi-local Virasoro representations on the Fock space $\mathit{F^{\otimes \frac{1}{2}}}$
Published 2014-06-19, updated 2014-10-05Version 2
We construct the bosonization of the Fock space $\mathit{F^{\otimes \frac{1}{2}}}$ of a single neutral fermion by using a 2-point local Heisenberg field. We decompose the Fock space $\mathit{F^{\otimes \frac{1}{2}}}$ as a direct sum of irreducible highest weight modules for the Heisenberg algebra $\mathcal{H}_{\mathbb{Z}}$, and thus we show that under the Heisenberg $\mathcal{H}_{\mathbb{Z}}$ action the Fock space $\mathit{F^{\otimes \frac{1}{2}}}$ of the single neutral fermion is isomorphic to the Fock space $\mathit{F^{\otimes 1}}$ of a pair of charged free fermions, thereby constructing the boson-fermion correspondence of type D-A. As a corollary we obtain the Jacobi identity equating the graded dimension formulas utilizing both the Heisenberg and the Virasoro gradings on $\mathit{F^{\otimes \frac{1}{2}}}$. We construct a family of 2-point-local Virasoro fields with central charge $-2+12\lambda -12\lambda^2, \ \lambda\in \mathbb{C}$, on the Fock space $\mathit{F^{\otimes \frac{1}{2}}}$. We construct a $W_{1+\infty}$ representation on $\mathit{F^{\otimes \frac{1}{2}}}$ and show that under the $W_{1+\infty}$ action $\mathit{F^{\otimes \frac{1}{2}}}$ is again isomorphic to $\mathit{F^{\otimes 1}}$.