{ "id": "1406.5158", "version": "v2", "published": "2014-06-19T19:15:41.000Z", "updated": "2014-10-05T18:25:43.000Z", "title": "Boson-fermion correspondence of type D-A and multi-local Virasoro representations on the Fock space $\\mathit{F^{\\otimes \\frac{1}{2}}}$", "authors": [ "Iana I. Anguelova" ], "comment": "23 pages. References added, some typos corrected", "categories": [ "math-ph", "math.MP", "math.QA", "math.RT" ], "abstract": "We construct the bosonization of the Fock space $\\mathit{F^{\\otimes \\frac{1}{2}}}$ of a single neutral fermion by using a 2-point local Heisenberg field. We decompose the Fock space $\\mathit{F^{\\otimes \\frac{1}{2}}}$ as a direct sum of irreducible highest weight modules for the Heisenberg algebra $\\mathcal{H}_{\\mathbb{Z}}$, and thus we show that under the Heisenberg $\\mathcal{H}_{\\mathbb{Z}}$ action the Fock space $\\mathit{F^{\\otimes \\frac{1}{2}}}$ of the single neutral fermion is isomorphic to the Fock space $\\mathit{F^{\\otimes 1}}$ of a pair of charged free fermions, thereby constructing the boson-fermion correspondence of type D-A. As a corollary we obtain the Jacobi identity equating the graded dimension formulas utilizing both the Heisenberg and the Virasoro gradings on $\\mathit{F^{\\otimes \\frac{1}{2}}}$. We construct a family of 2-point-local Virasoro fields with central charge $-2+12\\lambda -12\\lambda^2, \\ \\lambda\\in \\mathbb{C}$, on the Fock space $\\mathit{F^{\\otimes \\frac{1}{2}}}$. We construct a $W_{1+\\infty}$ representation on $\\mathit{F^{\\otimes \\frac{1}{2}}}$ and show that under the $W_{1+\\infty}$ action $\\mathit{F^{\\otimes \\frac{1}{2}}}$ is again isomorphic to $\\mathit{F^{\\otimes 1}}$.", "revisions": [ { "version": "v1", "updated": "2014-06-19T19:15:41.000Z", "abstract": "We construct the bosonization of the Fock space $\\mathit{F^{\\otimes \\frac{1}{2}}}$ of a single neutral fermion by using a 2-point local Heisenberg field. We decompose the Fock space $\\mathit{F^{\\otimes \\frac{1}{2}}}$ as a direct sum of irreducible highest weight modules for the Heisenberg algebra $\\mathcal{H}_{\\mathbb{Z}}$, thereby constructing the boson-fermion correspondence of type D-A. We show that under the Heisenberg $\\mathcal{H}_{\\mathbb{Z}}$ action the Fock space $\\mathit{F^{\\otimes \\frac{1}{2}}}$ of the single neutral fermion is isomorphic to the Fock space $\\mathit{F^{\\otimes 1}}$ of a pair of charged free fermions. By utilizing both the Heisenberg and the Virasoro gradings we obtain the Jacobi identity equating the two graded dimension formulas for $\\mathit{F^{\\otimes \\frac{1}{2}}}$. We construct a family of 2-point-local Virasoro fields with central charge $-2+12\\lambda -12\\lambda^2, \\ \\lambda\\in \\mathbb{C}$, on the Fock space $\\mathit{F^{\\otimes \\frac{1}{2}}}$. We construct a $W_{1+\\infty}$ representation on $\\mathit{F^{\\otimes \\frac{1}{2}}}$ and show that under the $W_{1+\\infty}$ action $\\mathit{F^{\\otimes \\frac{1}{2}}}$ is again isomorphic to $\\mathit{F^{\\otimes 1}}$.", "comment": "23 pages", "journal": null, "doi": null }, { "version": "v2", "updated": "2014-10-05T18:25:43.000Z" } ], "analyses": { "subjects": [ "81R10", "17B68", "17B69" ], "keywords": [ "fock space", "multi-local virasoro representations", "boson-fermion correspondence", "type d-a", "single neutral fermion" ], "tags": [ "journal article" ], "publication": { "doi": "10.1063/1.4901557", "journal": "Journal of Mathematical Physics", "year": 2014, "month": "Nov", "volume": 55, "number": 11, "pages": 111704 }, "note": { "typesetting": "TeX", "pages": 23, "language": "en", "license": "arXiv", "status": "editable", "inspire": 1301612, "adsabs": "2014JMP....55k1704A" } } }