arXiv Analytics

Sign in

arXiv:1405.1388 [math.FA]AbstractReferencesReviewsResources

Rudin's Submodules of $H^2(\mathbb{D}^2)$

B. K. Das, Jaydeb sarkar

Published 2014-05-06, updated 2014-10-22Version 2

Let $\{\alpha_n\}_{n\geq 0}$ be a sequence of scalars in the open unit disc of $\mathbb{C}$, and let $\{l_n\}_{n\geq 0}$ be a sequence of natural numbers satisfying $\sum_{n=0}^\infty (1 - l_n|\alpha_n|) <\infty$. Then the joint $(M_{z_1}, M_{z_2})$ invariant subspace \[\mathcal{S}_{\Phi} = \vee_{n=0}^\infty \Big( z_1^n \prod_{k=n}^\infty \left(\frac{-\bar{\alpha}_k}{|\alpha_k|} \frac{z_2 - \alpha_k}{1 - \bar{\alpha}_k z_2}\right)^{l_k} H^2(\mathbb{D}^2)\Big),\] is called a Rudin submodule. In this paper we analyze the class of Rudin submodules and prove that \[ \text{dim} (\mathcal{S}_{\Phi}\ominus (z_1 \mathcal{S}_{\Phi}+ z_2\mathcal{S}_{\Phi}))= 1+\#\{n\ge 0: \alpha_n=0\}<\infty. \]In particular, this answer a question earlier raised by Douglas and Yang (2000).

Comments: 6 pages. Revised. To appear in C. R. Acad. Sci. Paris
Categories: math.FA, math.CV, math.OA
Subjects: 47A13, 47A15, 47B38, 46E20, 30H10
Related articles: Most relevant | Search more
arXiv:2005.02243 [math.FA] (Published 2020-05-05)
Almost invariant subspaces of the shift operator on vector-valued Hardy spaces
arXiv:2209.10921 [math.FA] (Published 2022-09-22)
Some remarks on invariant subspaces in real Banach spaces (revised version)
arXiv:2004.11708 [math.FA] (Published 2020-04-24)
The spectrum of the restriction to an invariant subspace