{ "id": "1405.1388", "version": "v2", "published": "2014-05-06T18:21:38.000Z", "updated": "2014-10-22T21:05:44.000Z", "title": "Rudin's Submodules of $H^2(\\mathbb{D}^2)$", "authors": [ "B. K. Das", "Jaydeb sarkar" ], "comment": "6 pages. Revised. To appear in C. R. Acad. Sci. Paris", "categories": [ "math.FA", "math.CV", "math.OA" ], "abstract": "Let $\\{\\alpha_n\\}_{n\\geq 0}$ be a sequence of scalars in the open unit disc of $\\mathbb{C}$, and let $\\{l_n\\}_{n\\geq 0}$ be a sequence of natural numbers satisfying $\\sum_{n=0}^\\infty (1 - l_n|\\alpha_n|) <\\infty$. Then the joint $(M_{z_1}, M_{z_2})$ invariant subspace \\[\\mathcal{S}_{\\Phi} = \\vee_{n=0}^\\infty \\Big( z_1^n \\prod_{k=n}^\\infty \\left(\\frac{-\\bar{\\alpha}_k}{|\\alpha_k|} \\frac{z_2 - \\alpha_k}{1 - \\bar{\\alpha}_k z_2}\\right)^{l_k} H^2(\\mathbb{D}^2)\\Big),\\] is called a Rudin submodule. In this paper we analyze the class of Rudin submodules and prove that \\[ \\text{dim} (\\mathcal{S}_{\\Phi}\\ominus (z_1 \\mathcal{S}_{\\Phi}+ z_2\\mathcal{S}_{\\Phi}))= 1+\\#\\{n\\ge 0: \\alpha_n=0\\}<\\infty. \\]In particular, this answer a question earlier raised by Douglas and Yang (2000).", "revisions": [ { "version": "v1", "updated": "2014-05-06T18:21:38.000Z", "abstract": "Let $\\{\\alpha_n\\}_{n\\ge 0}$ be a sequence of scalars in the open unit disc of $\\mathbb{C}$, and let $\\{l_n\\}_{n\\ge 0}$ be a sequence of natural numbers satisfying $\\sum_{n=0}^\\infty (1 - l_n|\\alpha_n|) <\\infty$. Then the joint $(M_{z_1}, M_{z_2})$ invariant subspace \\[\\mathcal{S}_{\\Phi} = \\vee_{n=0}^\\infty \\Big(z_1^n \\prod_{k=n}^\\infty \\left(\\frac{-\\bar{\\alpha}_k}{|\\alpha_k|} \\frac{z_2 - \\alpha_k}{1 - \\bar{\\alpha}_k z_2}\\right)^{l_k} H^2(\\mathbb{D}^2)\\Big),\\] is called a Rudin submodule. In this paper we analyze the class of Rudin submodules and prove that \\[ \\text{dim} (\\mathcal{S}_{\\Phi}\\ominus (z_1 \\cls_{\\Phi}+ z_2\\cls_{\\Phi}))= 1+#\\{n\\ge 0: \\alpha_n=0\\}<\\infty. \\]In particular, this answer a question earlier raised by Douglas and Yang.", "comment": "6 pages", "journal": null, "doi": null }, { "version": "v2", "updated": "2014-10-22T21:05:44.000Z" } ], "analyses": { "subjects": [ "47A13", "47A15", "47B38", "46E20", "30H10" ], "keywords": [ "rudins submodules", "rudin submodule", "open unit disc", "question earlier", "invariant subspace" ], "note": { "typesetting": "TeX", "pages": 6, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1405.1388D" } } }