arXiv:1405.0106 [math.AG]AbstractReferencesReviewsResources
Strong Stability of Cotangent Bundles of Cyclic Covers
Published 2014-05-01, updated 2014-05-27Version 2
Let $X$ be a smooth projective variety over an algebraically closed field $k$ of characteristic $p>0$ of $\dim X\geq 4$ and Picard number $\rho(X)=1$. Suppose that $X$ satisfies $H^i(X,F^{m*}_X(\Omg^j_X)\otimes\Ls^{-1})=0$ for any ample line bundle $\Ls$ on $X$, and any nonnegative integers $m,i,j$ with $0\leq i+j<\dim X$, where $F_X:X\rightarrow X$ is the absolute Frobenius morphism. We prove that by procedures combining taking smooth hypersurfaces of dimension $\geq 3$ and cyclic covers along smooth divisors, if the resulting smooth projective variety $Y$ has ample (resp. nef) canonical bundle $\omega_Y$, then $\Omg_Y$ is strongly stable $($resp. strongly semistable$)$ with respect to any polarization.