{ "id": "1405.0106", "version": "v2", "published": "2014-05-01T06:37:59.000Z", "updated": "2014-05-27T11:41:00.000Z", "title": "Strong Stability of Cotangent Bundles of Cyclic Covers", "authors": [ "Lingguang Li", "Junchao Shentu" ], "comment": "To appear in Comptes Rendus Math\\'ematique", "categories": [ "math.AG" ], "abstract": "Let $X$ be a smooth projective variety over an algebraically closed field $k$ of characteristic $p>0$ of $\\dim X\\geq 4$ and Picard number $\\rho(X)=1$. Suppose that $X$ satisfies $H^i(X,F^{m*}_X(\\Omg^j_X)\\otimes\\Ls^{-1})=0$ for any ample line bundle $\\Ls$ on $X$, and any nonnegative integers $m,i,j$ with $0\\leq i+j<\\dim X$, where $F_X:X\\rightarrow X$ is the absolute Frobenius morphism. We prove that by procedures combining taking smooth hypersurfaces of dimension $\\geq 3$ and cyclic covers along smooth divisors, if the resulting smooth projective variety $Y$ has ample (resp. nef) canonical bundle $\\omega_Y$, then $\\Omg_Y$ is strongly stable $($resp. strongly semistable$)$ with respect to any polarization.", "revisions": [ { "version": "v2", "updated": "2014-05-27T11:41:00.000Z" } ], "analyses": { "subjects": [ "14F17", "14G17", "14J60" ], "keywords": [ "cyclic covers", "strong stability", "cotangent bundles", "absolute frobenius morphism", "ample line bundle" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1405.0106L" } } }