arXiv Analytics

Sign in

arXiv:1404.4222 [math.RT]AbstractReferencesReviewsResources

On special covariants in the exterior algebra of a simple Lie algebra

Corrado De Concini, Pierluigi Möseneder Frajria, Paolo Papi, Claudio Procesi

Published 2014-04-16Version 1

For a simple complex Lie algebra $\mathfrak g$ we study the space $Hom_\mathfrak g(L,\bigwedge \mathfrak g)$ when $L$ is either the little adjoint representation or, in type $A_{n-1}$, the $n$-th symmetric power of the defining representation. As main result we prove that $Hom_\mathfrak g(L,\bigwedge \mathfrak g)$ is a free module, of rank twice the dimension of the $0$-weight space of $L$, over the exterior algebra generated by all primitive invariants in $(\bigwedge \mathfrak g^*)^{\mathfrak g}$, with the exception of the one of highest degree.

Related articles: Most relevant | Search more
arXiv:1311.4338 [math.RT] (Published 2013-11-18, updated 2015-04-21)
The adjoint representation inside the exterior algebra of a simple Lie algebra
arXiv:2006.08994 [math.RT] (Published 2020-06-16)
On some subspaces of the exterior algebra of a simple Lie algebra
arXiv:1202.6050 [math.RT] (Published 2012-02-27, updated 2015-04-12)
Tilting modules for the current algebra of a simple Lie algebra