{ "id": "1404.4222", "version": "v1", "published": "2014-04-16T12:29:47.000Z", "updated": "2014-04-16T12:29:47.000Z", "title": "On special covariants in the exterior algebra of a simple Lie algebra", "authors": [ "Corrado De Concini", "Pierluigi Möseneder Frajria", "Paolo Papi", "Claudio Procesi" ], "comment": "Latex file, 11 pages", "categories": [ "math.RT" ], "abstract": "For a simple complex Lie algebra $\\mathfrak g$ we study the space $Hom_\\mathfrak g(L,\\bigwedge \\mathfrak g)$ when $L$ is either the little adjoint representation or, in type $A_{n-1}$, the $n$-th symmetric power of the defining representation. As main result we prove that $Hom_\\mathfrak g(L,\\bigwedge \\mathfrak g)$ is a free module, of rank twice the dimension of the $0$-weight space of $L$, over the exterior algebra generated by all primitive invariants in $(\\bigwedge \\mathfrak g^*)^{\\mathfrak g}$, with the exception of the one of highest degree.", "revisions": [ { "version": "v1", "updated": "2014-04-16T12:29:47.000Z" } ], "analyses": { "keywords": [ "simple lie algebra", "exterior algebra", "special covariants", "simple complex lie algebra", "th symmetric power" ], "note": { "typesetting": "LaTeX", "pages": 11, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1404.4222D" } } }