arXiv Analytics

Sign in

arXiv:1403.8027 [math.CO]AbstractReferencesReviewsResources

On color-critical ($P_{5},\overline{P}_5$)-free graphs

Harjinder S. Dhaliwal, Angèle M. Hamel, Chính T. Hoàng, Frédéric Maffray, Tyler J. D. McConnell, Stefan A. Panait

Published 2014-03-31, updated 2014-11-27Version 2

A graph is $k$-critical if it is $k$-chromatic but each of its proper induced subgraphs is ($k-1$)-colorable. It is known that the number of $4$-critical $P_5$-free graphs is finite, but there is an infinite number of $k$-critical $P_5$-free graphs for each $k \geq 5$. We show that the number of $k$-critical $(P_5, \overline{P}_5)$-free graphs is finite for every fixed $k$. Our result implies the existence of a certifying algorithm for $k$-coloring $(P_5, \overline{P}_5)$-free graphs.

Comments: 13 pages, minor revisions made
Categories: math.CO
Related articles: Most relevant | Search more
arXiv:2108.05492 [math.CO] (Published 2021-08-12)
Some Results on $k$-Critical $P_5$-Free Graphs
arXiv:1108.5254 [math.CO] (Published 2011-08-26, updated 2012-06-03)
Turán numbers for $K_{s,t}$-free graphs: topological obstructions and algebraic constructions
arXiv:2301.02436 [math.CO] (Published 2023-01-06)
Vertex-Critical $(P_5, chair)$-Free Graphs