{ "id": "1403.8027", "version": "v2", "published": "2014-03-31T14:47:40.000Z", "updated": "2014-11-27T02:55:16.000Z", "title": "On color-critical ($P_{5},\\overline{P}_5$)-free graphs", "authors": [ "Harjinder S. Dhaliwal", "Angèle M. Hamel", "Chính T. Hoàng", "Frédéric Maffray", "Tyler J. D. McConnell", "Stefan A. Panait" ], "comment": "13 pages, minor revisions made", "categories": [ "math.CO" ], "abstract": "A graph is $k$-critical if it is $k$-chromatic but each of its proper induced subgraphs is ($k-1$)-colorable. It is known that the number of $4$-critical $P_5$-free graphs is finite, but there is an infinite number of $k$-critical $P_5$-free graphs for each $k \\geq 5$. We show that the number of $k$-critical $(P_5, \\overline{P}_5)$-free graphs is finite for every fixed $k$. Our result implies the existence of a certifying algorithm for $k$-coloring $(P_5, \\overline{P}_5)$-free graphs.", "revisions": [ { "version": "v1", "updated": "2014-03-31T14:47:40.000Z", "comment": "11 pages", "journal": null, "doi": null }, { "version": "v2", "updated": "2014-11-27T02:55:16.000Z" } ], "analyses": { "keywords": [ "free graphs", "result implies", "infinite number", "proper induced subgraphs" ], "note": { "typesetting": "TeX", "pages": 13, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1403.8027D" } } }