arXiv Analytics

Sign in

arXiv:1403.7372 [math.PR]AbstractReferencesReviewsResources

Local limit theorem for the maximum of a random walk

Johannes Kugler

Published 2014-03-28, updated 2014-03-31Version 2

Consider a family of $\Delta$-latticed aperiodic random walks $\{S^{(a)},0\le a\le a_0\}$ with increments $X_i^{(a)}$ and non-positive drift $-a$. Suppose that $\sup_{a\le a_0}\mathbf{E}[(X^{(a)})^2]<\infty$ and $\sup_{a\le a_0}\mathbf{E}[\max\{0,X^{(a)}\}^{2+\varepsilon}]<\infty$ for some $\varepsilon>0$. Assume that $X^{(a)}\xrightarrow[]{w} X^{(0)}$ as $a\to 0$ and denote by $M^{(a)}=\max_{k\ge 0} S_k^{(a)}$ the maximum of the random walk $S^{(a)}$. In this paper we provide the asymptotics of $\mathbf{P}(M^{(a)}=y\Delta)$ as $a\to 0$ in the case, when $y\to \infty$ and $ay=O(1)$. This asymptotics follows from a representation of $\mathbf{P}(M^{(a)}=y\Delta)$ via a geometric sum and a uniform renewal theorem, which is also proved in this paper.

Related articles: Most relevant | Search more
arXiv:1603.05536 [math.PR] (Published 2016-03-17)
Renewal theory with index zero
arXiv:2101.12695 [math.PR] (Published 2021-01-29)
Asymptotics for Kendall's renewal function
arXiv:1612.06835 [math.PR] (Published 2016-12-20)
Box constrained $\ell_1$ optimization in random linear systems -- asymptotics