{ "id": "1403.7372", "version": "v2", "published": "2014-03-28T13:39:52.000Z", "updated": "2014-03-31T07:49:10.000Z", "title": "Local limit theorem for the maximum of a random walk", "authors": [ "Johannes Kugler" ], "comment": "19 pages", "categories": [ "math.PR" ], "abstract": "Consider a family of $\\Delta$-latticed aperiodic random walks $\\{S^{(a)},0\\le a\\le a_0\\}$ with increments $X_i^{(a)}$ and non-positive drift $-a$. Suppose that $\\sup_{a\\le a_0}\\mathbf{E}[(X^{(a)})^2]<\\infty$ and $\\sup_{a\\le a_0}\\mathbf{E}[\\max\\{0,X^{(a)}\\}^{2+\\varepsilon}]<\\infty$ for some $\\varepsilon>0$. Assume that $X^{(a)}\\xrightarrow[]{w} X^{(0)}$ as $a\\to 0$ and denote by $M^{(a)}=\\max_{k\\ge 0} S_k^{(a)}$ the maximum of the random walk $S^{(a)}$. In this paper we provide the asymptotics of $\\mathbf{P}(M^{(a)}=y\\Delta)$ as $a\\to 0$ in the case, when $y\\to \\infty$ and $ay=O(1)$. This asymptotics follows from a representation of $\\mathbf{P}(M^{(a)}=y\\Delta)$ via a geometric sum and a uniform renewal theorem, which is also proved in this paper.", "revisions": [ { "version": "v2", "updated": "2014-03-31T07:49:10.000Z" } ], "analyses": { "subjects": [ "60G50", "60G70", "60K05" ], "keywords": [ "local limit theorem", "uniform renewal theorem", "latticed aperiodic random walks", "geometric sum", "asymptotics" ], "note": { "typesetting": "TeX", "pages": 19, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1403.7372K" } } }