arXiv Analytics

Sign in

arXiv:1403.6138 [math.CO]AbstractReferencesReviewsResources

On the sums of any k points in finite fields

David Covert, Doowon Koh, Youngjin Pi

Published 2014-03-24, updated 2015-02-04Version 2

For a set $E\subset \mathbb F_q^d$, we define the $k$-resultant magnitude set as $ \Delta_k(E) =\{\|\textbf{x}_1 + \dots + \textbf{x}_k\|\in \mathbb F_q: \textbf{x}_1, \dots, \textbf{x}_k \in E\},$ where $\|\textbf{v}\|=v_1^2+\cdots+ v_d^2$ for $\textbf{v}=(v_1, \ldots, v_d) \in \mathbb F_q^d.$ In this paper we find a connection between a lower bound of the cardinality of the $k$-resultant magnitude set and the restriction theorem for spheres in finite fields. As a consequence, it is shown that if $E\subset \mathbb F_q^d$ with $|E|\geq C q^{\frac{d+1}{2}-\frac{1}{6d+2}},$ then $|\Delta_3(E)|\geq c q$ for $d = 4$ or $d = 6$, and $|\Delta_4(E)| \geq cq$ for even dimensions $d \geq 8.$ In addition, we prove that if $d\geq 8$ is even, and $|E|\geq C_\varepsilon ~q^{\frac{d+1}{2} - \frac{1}{9d -18} + \varepsilon}$ for $\varepsilon >0$, then $|\Delta_3(E)|\geq c q.$

Related articles: Most relevant | Search more
arXiv:0904.0441 [math.CO] (Published 2009-04-02)
The sovability of norm, bilinear and quadratic equations over finite fields via spectra of graphs
arXiv:2206.04815 [math.CO] (Published 2022-06-09)
Connections between graphs and matrix spaces
arXiv:0707.4007 [math.CO] (Published 2007-07-26)
Reflection Groups and Polytopes over Finite Fields, III