{ "id": "1403.6138", "version": "v2", "published": "2014-03-24T20:22:33.000Z", "updated": "2015-02-04T22:15:40.000Z", "title": "On the sums of any k points in finite fields", "authors": [ "David Covert", "Doowon Koh", "Youngjin Pi" ], "comment": "16 pages", "categories": [ "math.CO", "math.CA", "math.NT" ], "abstract": "For a set $E\\subset \\mathbb F_q^d$, we define the $k$-resultant magnitude set as $ \\Delta_k(E) =\\{\\|\\textbf{x}_1 + \\dots + \\textbf{x}_k\\|\\in \\mathbb F_q: \\textbf{x}_1, \\dots, \\textbf{x}_k \\in E\\},$ where $\\|\\textbf{v}\\|=v_1^2+\\cdots+ v_d^2$ for $\\textbf{v}=(v_1, \\ldots, v_d) \\in \\mathbb F_q^d.$ In this paper we find a connection between a lower bound of the cardinality of the $k$-resultant magnitude set and the restriction theorem for spheres in finite fields. As a consequence, it is shown that if $E\\subset \\mathbb F_q^d$ with $|E|\\geq C q^{\\frac{d+1}{2}-\\frac{1}{6d+2}},$ then $|\\Delta_3(E)|\\geq c q$ for $d = 4$ or $d = 6$, and $|\\Delta_4(E)| \\geq cq$ for even dimensions $d \\geq 8.$ In addition, we prove that if $d\\geq 8$ is even, and $|E|\\geq C_\\varepsilon ~q^{\\frac{d+1}{2} - \\frac{1}{9d -18} + \\varepsilon}$ for $\\varepsilon >0$, then $|\\Delta_3(E)|\\geq c q.$", "revisions": [ { "version": "v1", "updated": "2014-03-24T20:22:33.000Z", "abstract": "For a set $E\\subset \\mathbb F_q^d$, we define the $k$-resultant magnitude set as $ \\Delta_k(E) =\\{\\|x^1 + \\dots + x^k\\|\\in \\mathbb F_q: x^1, \\dots, x^k \\in E\\},$ where $\\|\\alpha\\|=\\alpha_1^2+\\cdots+ \\alpha_d^2$ for $\\alpha=(\\alpha_1, \\ldots, \\alpha_d) \\in \\mathbb F_q^d.$ In this paper we find a connection between a lower bound of the cardinality of the $k$-resultant magnitude set and the restriction theorem for spheres in finite fields. As a consequence, it is shown that if $E\\subset \\mathbb F_q^d$ with $|E|\\geq C q^{\\frac{d+1}{2}-\\frac{1}{6d+2}},$ then $|\\Delta_3(E)|\\geq c q$ for $d = 4$ or $d = 6$, and $|\\Delta_k(E)| \\geq cq$ for even dimensions $d \\geq 4$ and $k \\geq 4$. In addition, we prove that if $d\\geq 8$ is even, and $|E|\\geq C_\\varepsilon ~q^{\\frac{d+1}{2}-\\frac{1}{9d-18}+\\varepsilon}$ for $\\varepsilon >0$, then $|\\Delta_3(E)|\\geq c q$ for some $0