arXiv:1403.4474 [math.FA]AbstractReferencesReviewsResources
Radial symmetric elements and the Bargmann transform
Marco Cappiello, Luigi Rodino, Joachim Toft
Published 2014-03-18Version 1
We prove that a function or distribution on $\rr d$ is radial symmetric, if and only if its Bargmann transform is a composition by an entire function on $\mathbf C$ and the canonical quadratic function from $\cc d$ to $\mathbf C$.
Comments: 11 pages
Categories: math.FA
Related articles: Most relevant | Search more
arXiv:1409.5238 [math.FA] (Published 2014-09-18)
The images of Gelfand-Shilov spaces under the Bargmann transform
arXiv:1506.06326 [math.FA] (Published 2015-06-21)
Towards a dictionary for the Bargmann transform
arXiv:1507.04850 [math.FA] (Published 2015-07-17)
The Bargmann transform and powers of harmonic oscillator on Gelfand-Shilov subspaces