{ "id": "1403.4474", "version": "v1", "published": "2014-03-18T14:32:11.000Z", "updated": "2014-03-18T14:32:11.000Z", "title": "Radial symmetric elements and the Bargmann transform", "authors": [ "Marco Cappiello", "Luigi Rodino", "Joachim Toft" ], "comment": "11 pages", "categories": [ "math.FA" ], "abstract": "We prove that a function or distribution on $\\rr d$ is radial symmetric, if and only if its Bargmann transform is a composition by an entire function on $\\mathbf C$ and the canonical quadratic function from $\\cc d$ to $\\mathbf C$.", "revisions": [ { "version": "v1", "updated": "2014-03-18T14:32:11.000Z" } ], "analyses": { "subjects": [ "35Q40", "35S05", "46F05", "33C10", "30Gxx" ], "keywords": [ "radial symmetric elements", "bargmann transform", "entire function", "canonical quadratic function" ], "note": { "typesetting": "TeX", "pages": 11, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1403.4474C" } } }