arXiv:1403.3211 [math.AP]AbstractReferencesReviewsResources
Positive ground states for a system of Schrödinger equations with critically growing nonlinearities
Pietro d'Avenia, Jarosław Mederski
Published 2014-03-13, updated 2014-07-21Version 3
We study the following problem \[ \begin{cases} -\Delta u = \lambda u + u^{2^*-2} v & \hbox{in} \Omega,\\ -\Delta v= \mu v^{2^*-1} + u^{2^*-1} & \hbox{in} \Omega,\\ u> 0,v> 0 & \hbox{in} \Omega,\\ u=v=0 & \hbox{on} \partial \Omega, \end{cases} \] where $\Omega$ is a bounded domain of $\mathbb{R}^N$, $N\geq 4$, $2^*=2N/(N-2)$, $\lambda\in\mathbb{R}$ and $\mu\geq 0$ and we obtain existence and nonexistence results, depending on the value of the parameters $\lambda$ and $\mu$.
Comments: 19 pages, pre-peer version, to appear in Calc. Var. Partial Differential Equations
Categories: math.AP
Related articles: Most relevant | Search more
arXiv:1301.4282 [math.AP] (Published 2013-01-18)
Approximate Deconvolution Model in a bounded domain with a vertical regularization
Motion of slightly compressible fluids in a bounded domain. II
arXiv:0802.4352 [math.AP] (Published 2008-02-29)
Klein-Gordon-Maxwell System in a bounded domain